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Abstract. Data recorded while learners are interacting with Massive
Open Online Courses (MOOC) platforms provide a unique opportunity
to build predictive models that can help anticipate future behaviors and
develop interventions. But since most of the useful predictive problems
are defined for a real-time framework, using knowledge drawn from the
past courses becomes crucial. To address this challenge, we designed a set
of processes that take advantage of knowledge from both previous courses
and previous weeks of the same course to make real time predictions on
learners behavior. In particular, we evaluate multiple transfer learning
methods. In this article, we present our results for the stopout prediction
problem (predicting which learners are likely to stop engaging in the
course). We believe this paper is a first step towards addressing the need
of transferring knowledge across courses.

1 Introduction

Data recorded while learners are interacting with the Massive Open Online
Courses (MOOC) platform provide a unique opportunity to learn about the
efficacy of the different resources, build predictive models that can help develop
interventions and propose/recommend strategies for the learner. Consider for
example a model built to predict stopout, that is, how likely is the learner to
stop engaging with the course in the coming weeks. One can learn the model
retrospectively on data generated from a finished course by following a typical
data mining procedure: splitting the data into test-train, learning the model and
tuning its parameters via cross validation using the training data, and testing
the models accuracy on test data which is a proxy for how model may perform
on unseen data.

In this paper, we focus on operationalization of the predictive models for real
time use. We raise a fundamental question: whether models trained on previous
courses would perform well on a new course (perhaps a subsequent offering of
the same course). This question is of utmost importance in MOOCs due to the
following observations:

Offerings could be subtly different: Due to the very nascent nature of the online
learning platforms, many aspects of the course evolve. Learners are thus
placed in a different environment each time, so they may interact and behave
differently.
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Offerings have a different learner/instructor population: Subsequent offeringsof
a course have a different population of students, teaching assistants, and in
some cases, different instructors.

Some variables may not transfer: Some of the variables developed for one offer-
ing may not exist in the subsequent offering. For example, if a variable is the
time spent on a specific tutorial, the variable may not be computed if the
tutorial is not offered in subsequent offering.

To develop methods for operationalization of models for real time predictions,
in this paper we study three different offerings of a course offered by MIT via
edX called Circuits and Electronics. We formulate two versions of the prediction
problem. One version of the problem, in a very limited number of prediction
scenarios, allows us to use data gathered in an on-going course to make pre-
dictions in the same course. We call this in-situ learning. In the second version
we employ multiple transfer learning methods and examine their performance.
In our models we rely on a set of variables that we consider are universal, and
employ techniques to overcome the differences in their ranges.

The paper is organized as follows. In next section we present the datasets
we are working with, and the features/variables we defined and extracted. In
Section 3 we define the stopout prediction problem and multiple versions of
the problem formulation. In Section 4 we present different transfer learning
approaches we employ. Section 5 presents the results. Section 6 presents the
related work in this area. Section 7 concludes.

2 Dataset

In a MOOC every mouse click learners make on the course website is recorded,
their submissions are collected, and their interactions on forums are stored. In
this paper, our data is from three consecutive offerings of an MITx course called
6.002x : Circuits and Electronics offered via edX platform. We chose three
offerings of this course as an ideal test case for transfer learning since we
expect that different offerings of the same course may have statistically simi-
lar learner-behavior data. We name the offerings as A (offered in spring 2012),
B (offered in fall 2012) and C (offered in spring 2013). The number of learners
who registered/certified in these three offerings were 154753/7157, 51394/2987
and 29,050/1099 respectively.

Per Learner Longitudinal Variables. Even though each course could be
different in terms of content, student population and global environment, the
data gathered during the student’s interaction with the platform allows us to
extract a common set of longitudinal variables as shown in table 1 (more details
about these features are presented in [12]).

3 Stopout Prediction in MOOCs

We consider the problem of predicting stopout (a.k.a dropout) for learners in
MOOCs. The prediction problem is described as: considering a course of duration
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Table 1. Features derived per learner per week for the above-mentioned courses

x1 Total time spent on all resources
x2 Number of distinct problems attempted
x3 Number of submissions
x4 Number of distinct correct problems
x5 Average number of submissions per problem
x6 Ratio of total time spent to number of distinct correct problems
x7 Ratio of number of problems attempted to number of distinct correct problems
x8 Duration of longest observed event
x9 Total time spent on lecture resources
x10 Total time spent on book resources
x11 Total time spent on wiki resources
x12 Number of correct submissions
x13 Percentage of the total submissions that were correct
x14. Average time between a problem submission and problem due date

k weeks, given a set of longitudinal observations (covariates) that describe the
learner behavior and performance in a course up until a week i predict whether
or not the learner will persist in week i + j to k where j ∈ {1 . . . k − i} is the
lead [10]. A learner is said to persist in week i if s/he attempts at least one
problem presented in the course during the week. In the context of MOOC’s,
making real time predictions about stopout would give a tremendous opportunity
to make interventions, collect surveys and improve course outcomes.

3.1 Problem Formulation and Learning Possibilities

Given the learner interactions data up until week i, we formulate two different
types of prediction problems. These different formulations have implications on
how training data could be assembled and how model learning could incorporate
information from a previous course.

Formulations

– Entire history: In this formulation, we use all the information available
regarding the learner up until week i for making predictions beyond week i.

– Moving window: In this formulation, we use a fixed amount of historical
information (parameterized by window size) of the learner to make predic-
tions. That is, if the window size is set to 2 then for any week i we only
use information from weeks i − 1 and i − 2.

Learning

– In-situ learning: In-situ learning attempts to learn a predictive model from
the data from the on-going course itself. To be able to do so we have to
assemble data corresponding to learners that stopped out (negative exem-
plars) along with learners who are persisting (positive exemplars). This is
only possible for the moving window formulation. Under the formulation,
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when the course is at week i and the window size is w, lead is j, and
w + j < i, we can assemble training examples by following a sliding window
protocol over the data up until i.

– Transfer learning: Through transfer learning we attempt to transfer infor-
mation (training data samples or models) from a previous course to establish
a predictive model for an ongoing course.

Performance Metric: We note that the positive examples in our dataset (learn-
ers that don’t stopout) only represent around 10% of the total amount of learners.
A simple baseline could lead to very high accuracy (e.g. predicting that every
learner dropped out for all the test samples gives an accuracy of nearly 90%). We
use Area Under the Curve as a metric to capture and compare the discriminatory
performance of our models.

4 Transfer Learning

Notationally we call source offering S (for past source offering) and target offer-
ing T (for current on-going course). nS and nT respectively are the number
of samples in the source and target offering and DS = {xSi, ySi}ns

i=1 represents
the data from the source. We distinguish two main scenarios for transfer learn-
ing as defined in [8] and [13]: inductive transfer learning where some labels
are available for the target course given by DT = {xTi, yTi}nt

i=1 and transduc-
tive transfer where no labels are available for the target course data, given by
DT = {xTi}nt

i=1.

4.1 A Naive Approach

When using samples from a previous course to help predict in a new course, we
first wonder if the two tasks (predicting in the first course and predicting in the
second course) are similar enough so that applying a model learnt on the first
course to the second one would give satisfying results. To answer this question
we train a logistic regression model with optimized ridge regression parameter
on S and apply it to T. We call this naive transfer method.

4.2 Inductive Learning Approach

Multi-task Learning Method. In the multi-task learning method (MT)[2],
two sets of weights are learnt for samples from source and target. The weights
are coupled by having a common component that is shared between a weight for
a covariate from source and target. This sharing is represented by:{

wS = vS + c0

wT = vT + c0
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where vS , vT ∈ �d, d = m + 1 for m covariates. From a logistic regression
perspective, this method requires learning two coupled weight vectors, while
regularizing the two components separately:

(w∗
S , w∗

T ) = arg min
vS ,vT ,w0

∑
i=1:nS

l(xSi, ySi, wS)+

∑
i=1:nT

l(xTi, yTi, wT ) +
λ1

2
(||vs||2 + ||vT ||2) + λ2||c0||2

where l(x, y, w) = log( 1
1+exp(−y(w0+xT .w))

). Regularization allows us to set the
degree of similarity between courses via parameter λ2

λ1
stands for relative signif-

icance of the independent part over the common part of the weights. For small
values of λ2

λ1
we expect the two models to have very common weight vectors

(regularization constraints are higher on the distinct part vS and vT than on the
common part c0). In our experiments we set λ1 = 0.2 and λ2 = 0.8.

Logistic Regression with Prior Method. In MT method, the regulariza-
tion parameters impose the same common/particular penalization ratio to all
the components of the weight vector that correspond to different covariates.
However, in most cases we would like to differentiate between covariates as their
importance is likely to vary between source and the target course.

Hence we resort to a method that uses Prior distribution on the weights of
the target model [3]. The Logistic Regression with Prior method, PM, first esti-
mates the prior distribution (assumed to be Gaussian) on the weights by splitting
the data from source course into D = 10 sub-samples (without replacement). For
each sub-sample, we fit the usual logistic regression classifier using ridge regular-
ization. We obtain D sets of weights {{wk

i }i=1:d}k=1:D and use them to compute
our prior belief on the weights we expect to derive from any new course as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μj =
1
D

∑
k=1:D

wk
j for j = 1 : d

σj =

√
1

D − 1

∑
k=1:D

(wk
j − μj)2 for j = 1 : d

When building a model for the target domain, in this formulation, the usual
logistic regression cost functionNLL(w0, w) =

∑
i=1:N

l(xTi, yTi, wT )+ 1
2λ

∑
j=1:d

w2
j

becomes NLL(w0, w) =
∑

i=1:N

l(xTi, yTi, wT ) + 1
2λ

∑
j=0:d

(wj−μj)
2

σ2
j

, where μ =

[μ1, . . . , μd], σ = [σ1, . . . , σd] and l(xi, yi, w) = log( 1
1+exp(−yi(w0+xT

i .w))
) is the

log-likelihood of the i th data point for a multivariate gaussian prior on the
distributions. The effect of such strategy is to allow higher flexibility (less con-
straints) for weights which vary significantly across source sub-domains and con-
strain more the weights whose variation across source sub-domains are smaller.
In our experiments, we set λ = 1.
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4.3 Transductive Learning Approach

In this section we focus on the scenario where no labeled samples are available
in the target course. This is the case when considering a entire history setting
(no labeled samples from the ongoing course are available because the week of
the prediction is in the future). To transfer the model from source to target,
we follow our belief that the covariates from the two courses may overlap to
a significant degree and we use a sample correction bias [5]. This importance
sampling, or IS, method is equivalent to assuming that the covariates are drawn
from a common distribution and that their difference comes from a selection
bias during the sampling process (out of this general common distribution). In
order to correct this sample selection bias, the idea is to give more weight to the
learners in the source course that are “close” to the learners in the target course.
Doing so, the classification algorithm takes advantage of the similar learners
of the source course and barely considers the significantly different ones. For
each target sample we predict: ŷTi = arg max

y∈{+1,−1}
l(xTi, y, w∗). The weights are

estimated from the source data by optimizing:

where w∗ = arg min
w

∑
i=1:nS

βi l(xSi, ySi, w)

Note that each learner’s data is reweighted using a parameter βi in the log
likelihood objective function. Finding the optimal βi for such a reweighting pro-
cedure would be straigthforward if we knew the two distributions from which
the source and the target learners data are drawn. To find these in practice,
we use a gaussian kernel k(x, z) = exp(− ||x−z||2

σ2 ) ∀x, z ∈ S ∪ T to measure
the distance between data points. In our experiments σ = 1. We then com-
pute for each source data point an average importance to the target domain:
κi = 1

nT

∑
j=1:nT

k(xSi, xTj) and use a quadratic formulation found in [5] to eval-

uate the optimal coefficients β∗
i .

β∗ ∼ arg min
β

1
2
βT Kβ − nS κT βs.t. βi ∈ [0, B] and

∣∣∣∣∣
∑

i=1:nS

βi − nS

∣∣∣∣∣ ≤ nSε

where Kij = k(xSi, xSj). The second term in the optimization problem makes
sure we choose βi high when the average distance of XSi

to all the XT∗ is low.

5 Experimental Settings and Results

Problem Settings: As per Figure 1 there are number of ways a prediction
problem can be solved. For inductive transfer learning, we have two methods -
prior and multi-task. In total the same prediction problem can be solved via 7
different methods. As a reminder, we denote the courses as follows: 6.002x spring
2012 as A, 6.002x fall 2012 as B, and 6.002x spring 2013 as C. First we consider
the entire history setting and then present results for moving window setting.
For comparison we define an a-posteriori model.
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MW  EH 

Transfer learning In-situ 

T  I N 

T  N 

Prediction problem  

Fig. 1. Different ways we can learn and execute a model depending on the formulation
we choose. MW stands for Moving Window, EH stands for Entire History, T stands
for Transductive model, I stands for Inductive model and N stands for Naive model.

Definition 1. a-posteriori model: It is the model built retrospectively using the
labeled data from the target course itself. That is, the data from the target course
is split into train and test and a model is trained on the training data and AUC
is reported on the test data. We note that this is typically how results on dropout
prediction are reported in several papers up until now.

Entire History Formulation: Within the entire history setting, two differ-
ent methods can be applied - naive and importance sampling. When applying
these two methods we normalize features (using min-max normalization) inde-
pendently within each course. Intuitively this makes sense, as normalizing all
data using the normalization parameters calculated on the training set/previous
course could induce misrepresentation of variables. For example, the variable
number of correct problems could have different ranges as the total number of
problems offered during a particular week may vary from offering to offering.
Course-wise normalization allows us to compare learners to their peers thus
making variables across courses comparable.
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Fig. 2. Performance of transfer learning models for the Entire History formulation.
Solid black line plots stands for the AUC obtained for the hypothetical case where we
could access data from the future of the ongoing course (a-posteriori model). Naive
method stands for the AUC obtained by naively using the source course as a training
dataset and the target course as a test set. IS stands for importance sampling method.
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Figure 2 shows the results achieved for three different transfer learning sce-
narios. On x-axis is the lead for the prediction problem and the y-axis is the
average AUC across different amounts of history (same lead at different weeks).
For example, at lead= 1, the y-axis value is the average of AUC values for 13
prediction problems defined at week 1-to-13. To summarize our results we use a
question-answer format.

Is the Performance of an a-Posteriori Model a Good Indicator of Real
Time Prediction Performance?: The a-posteriori model performance in most
cases presents an optimistic estimate. Models trained on a previous offering
struggle to achieve the same performance when transferred. This is especially
true for one week ahead prediction. In two out of three cases in Figure 2 we
notice a drop of 0.1 or more in AUC value when a model from previous offering
is used. Hence, we argue that when developing stopout models for MOOCs for
real time use, one must evaluate the performance of the model on successive
offerings and report its performance.

Which is Better: Naive or Importance Sampling Based Transfer?:
Based on our experiments we are not able to conclusively say whether naive
transfer or the importance sampling based transfer is better. In some prediction
problems one is better than the other and vice-versa. We hypothesize that the
performance of importance sampling based approach can be further improved by
tuning its parameters and perhaps fusing the predictions of both the methods
can yield a better/robust performance.

What Could Explain the Slightly Better Performance of Transferred
Models on C?: Number of learners in course C are significantly less than that in
B or A. We posit that perhaps having more data in A or B enabled development
of models that transferred well to C. This is specially true for B-to-C transfer.
Additionally, since chronologically B is closer to C we hypothesize that not much
may have changed in the platform or the course structure between these two
offerings. This, together with the fact that B has more data enabled models
trained on B to perform well on C (when compared to the a-posteriori model
developed on C).

Moving Window Formulation. We next consider the moving window formu-
lation. We consider that the target course is at week 4 and our goal is to predict
whether or not learners who are in week 4 will stopout or will stay in the course.
Fixing the window size to be 2 we can generate training examples for lead 1
by assembling covariates from week 1 and 2 and week 2 and 3. For lead 2 we
can form training examples by assembling covariates from week 1 and 2. This
allows us to generate labeled exemplars as we have knowledge about stopouts for
week 3 and 4 in the ongoing course. Thus we are able to perform in-situ learning
and inductive transfer learning methods. However, we are only able to solve two
prediction problems - lead 1 and lead 2. We present the results achieved via
multiple methods in Figure 3. We present the summary of our results.
How Did In-situ Learning Do?: In-situ learning did surprisingly well when
compared to transfer learning methods under the moving window formulation.
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Fig. 3. Performance of transfer learning models for the Moving Window formulation

For both B and C the performance for lead 1 and 2 is between 0.6 -0.7 AUC
(at week 4). This performance is also comparable to the entire history version of
the same problem. In our subsequent work we intend to evaluate in-situ learning
for a wide variety of prediction problems and not just at week 4.

6 Related Work

Dropout prediction and analysis of reasons for dropout are of great interest to
the educational research community in a variety of contexts: e-learning, distance
education, and online courses offered by community colleges. However, most
studies focus on the identifying aspects of student’s behavior, progress, and per-
formance that correlate with dropout. These studies inform policy or give a
broader understanding as to why students dropout [9,11]. Real-time predictions
are rarely studied [6,7], but to the best of our knowledge, we have not found
studies that examine whether models transfer well or if they could be deployed.
Perhaps, MOOCs provide an ideal use case for transfer learning; with multiple
offerings of the same course during a year, it is paramount that we use what we
learned from the previous course to make predictions and design interventions in
the next course. Within MOOC literature, there is an increasing amount of inter-
est in predicting stopout [1,4]. In most cases, methods have focused on predicting
one-week ahead and have not attempted to use trained on one course on another.
Through this study, we are taking the first steps toward understanding different
situations in which one can transfer models/data samples from one course to
another. We have succeeded in (a) defining different ways real-time predictions
can be achieved for a new offering, (b) multiple ways in which transfer learning
can be achieved, and (c) demonstration of transfer learning performance.

7 Conclusion

In this paper we presented different methods that allow us to make real time pre-
dictions for learners in MOOCs. Particularly, we emphasized on transfer learning
techniques that form the foundation for using models in real time. The key ideas
of these methods were to formulate two different settings for a same prediction
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problem (using aggregate data from previous course or partial data form the
ongoing course) and implement advanced machine learning techniques for both.

From an engineering and scientific perspective, we believe these are first steps
towards building high fidelity predictive systems for MOOC’s (beyond retrospec-
tively analyzing stopout prediction problem). To complete the model, we expect
further work to designing new transfer learning methods, designing methodolo-
gies to tune the parameters for the current transfer learning approaches, evaluat-
ing the methods systematically on a number of courses, defining more covariates
for learners and deploying the predictive system in an actual course.
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